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Observation:

x

y

b
φ

There is a large momentum anisotropy:

v2 ≡

〈
p2

x − p2
y

〉
〈
p2

x + p2
y

〉 ≈ 20%

Interpretation

• The medium responds as a fluid to differences in X and Y pressure gradients

Hydro models “work”



Estimate of transport times with Heavy Quarks

• Put a heavy quark in this medium

θδ
T

T mp~

m
T~θδ

• The charm quark undergoes a random walk suffering many collisions

• The relaxation time of the heavy quark is:

τcharm
R ∼ M

T
τ

light
R

If you think you know the relaxation time you should be able to compute the charm

spectrum.



Langevin description of heavy quark thermalization:

• Write down an equation of motion for the heavy quarks.

dx

dt
= − p

M
dp

dt
= − ηDp︸︷︷︸

Drag

+ ξ(t)︸︷︷︸
Random Force

• The drag and the random force are related

〈ξi(t)ξj(t′)〉 =
κ

3
δij δ(t− t′) ηD =

κ

2MT

κ = Mean Squared Momentum Transfer per Time

• Einstein related the diffusion coefficient to the mean squared momentum transfer

D = 2T 2/κ

All parameters are related to the heavy quark diffusion coefficient or κ



Hydro + Brownian Heavy Quarks

x

y

The heavy quarks will either relax to the thermal spectrum and show the same v2

as all thermal particles or not depending on the Drag/Diffusion coefficients and pT .





Summary

1. Suppression and Elliptic Flow are in-

timately related.

2. From the suppression pattern, we

estimate that

D <∼
12

2πT

With this diffusion coefficient, I can’t

produce enough elliptic flow.



I want to know the heavy quark diffusion coefficient

• Lattice→ Spectral Functions

• Compute at strong coupling→ AdS/CFT



Matching Langevin to a Microscopic Theory

• Heavy Quarks are Quasi Classical

λde Broglie ∼
h̄√
MT

� h̄

T

• Compare the Langevin process to the microscopic theory

Langevin

dp

dt
= −ηDp + ξ(t)

Microscopic Theory

dp

dt
= F(t,x) = qE(t,x)

• Match the Langevin to the Microscopic Theory

Langevin

κ =
∫

dt 〈ξ(t) ξ(0)〉

Microscopic Theory

κ =
∫

dt 〈F(t,x)F(0,x)〉HQ

Diffusion Coefficient↔ Electric Field Correlator



Wilson Lines and the Diffusion Coefficient:

• Variations of Wilson Lines give electric field correlators

Contour Time

space

C,1t C,2t

〈
δ2W [δy]

δy(t1) δy(t2)

〉
Y M

=, 〈TC [E(t2)E(t1) ] 〉

• The varied Wilson line = Force generating functional.〈
ei
∫

C
dt δy(t)F(t)

〉
HQ

=
1

〈WC [0]〉
〈WC [δy]〉



N=4 at Finite Temperature

String

Event Horizon Test BraneN−1 D3 Branes
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Temperature of gauge theory is the hawking temperature of the Black hole



Testing the string dynamics:

Boundary

 xδ

 tδ

time

1t

2t  tδ

 xδ

space

W [δx]

=⇒

Bulk

r=0 0r ∞r=

Scl[δx]

1
〈WC [0]〉

〈WC [δy]〉 =
1

eiScl[0]
eiScl[δy]



Summary of Technical Steps

• Fluctuate the end point of a string at r =∞ at very small frequencies: u = 1/r2

SNG =
R2

2π`2
s

∫
dt dr︸ ︷︷ ︸
Area

[
1− 1

2

(
ẏ2
‖
f
− 4fu

(
y′‖

)2
)

︸ ︷︷ ︸
Quadratic Fluctuations

]

• Solve for the waves along the string in the AdS5 × S5 metric

– Impose incoming boundary conditions for retarded propagator .

• Differentiating twice with respect to δy yields the retarded force force correlator

〈F(t)F(0)〉 ∼ δ2

δy(t)δy(0)
〈W [δy]〉 ∼ δ2

δy(t)δy(0)
eiSNG[δy]

κ is the imaginary part of the retarded force-force correlator



Result

D =
2√
λπT

η

e + p
=

1
4πT

c N
YM
2g

Transport

/(e+p)η

D



QCD Guesses: Strong Coupling

• Strong Coupling: N = 4 SUSY. λ ≈ 5↔ 20

D =
2√
λπT

−→ D ' 1.0↔ 2.0
2πT

• Weak coupling (Aleski Vuorinnen)

2 gluons + 6 scalars + 8 fermions 6= 2 gluons

DQCD

DSY M
=

6

1 + Nf

2Nc

≈ 4

• Best guess for QCD from strong coupling

D ≈ 4.0↔ 8.0
2πT

Compare to weak coupling best guess D ≈ 6/(2πT )



Constraint On The Heavy Quark Mass

• To treat the heavy quark as a quasi-classical quasi-particle we need

τR �
h̄

T

• Then we have

τR ∼
M

T
D D =

2√
λπT

• This leads to a constraint on Mass/String Length

M � πT

2

√
λ L� ro

• Substituting numbers we have

M � 1.7GeV

(
T

0.250 GeV

) (
αSY MN

1.5

)1/2



Spectral Functions

ρ(ω) =
∫

e+iωt 〈[J(t), J(0)]〉

ω

ω
) ω(ρ 

2M

• Equations of motion predict the spectral weight

dv

dt
= −ηD v + ξ 〈v(t)〉 = v0e

−ηDt

• This makes the predictions

ρ(ω)
ω

= χs
T

M

η

ω2 + η2
η =

T

MD



The Spectral Density

ω̄ =
ω

ηD

k̄ =
k√

M/TηD
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How to get the full spectral function?

• We had the equation of motion

MQ
d2x

dt
+

κ

2T︸︷︷︸
− ImGR

ω

× dx

dt︸︷︷︸
−iω

= ξ(t)
〈
ξ(t)ξ(t′)

〉
= κ︸︷︷︸

− 2T
ω

ImGR

δ(t− t′)

• There is a finite frequency generalization of this

MQ
d2xr

dt
+
∫ t

GR(t−t′)xr(t′) = ξ 〈ξ(ω)ξ(−ω)〉 = (1+2nB)ImGR(ω)

• The solution to this equation is

xr(ω) =
ξ(ω)

(−MQω2 + ReGR(ω)) + iImGR(ω)

Can relate 〈x(ω)x(−ω)〉 to ρJJ(ω)



The answer:

ρJJ(ω) = χs
ω2ImGR(ω)

(−MQω2 + ReGR(ω))2 + (ImGR(ω))2
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Grass Contribution is larger than you think:
√

λT 2

M2



The problem:

String

Event Horizon Test BraneN−1 D3 Branes

r=0 r0 r=Infinity
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The quark doesn’t move. There is no noise in “standard” AdS/CFT



How to derive this? (Feynman, Vernon, Caldeira, Legget, C. Greiner)

MQ
d2xr

dt
+
∫ t

GR(t− t′)xr(t′) = ξ

• Consider a heavy particle coupled to bath a force on the contour

ZQ =
〈∫

Dx1Dx2 ei
∫

1
2
Mv2

1−i
∫

1
2
Mv2

2 ei
∫

dt1F1x1 e−i
∫

dt2F2x2

〉
Bath

• The force term is small compared to the inertia〈
ei
∫

dt1F1x1 e−i
∫

dt2F2x2

〉
bath

' e−
1
2

∫
dt dt′ xa(t)iGab(t−t′)xb(t

′)

• Now switch to the “ra” basis

xr = (x1‘ + x2)/2 xa = x1 − x2



• Find

ZQ =
∫

DxrDxa e−i
∫

xaMẍr−i
∫

dtdt′xa(t)GR(t−t′)xr(t′)

× e−
1
2

∫
dt
∫

dt′xa(t)Gsym(t−t′)xa(t′)

• Replace Gaussian with fourier transform

e−
1
2

∫
dt
∫

dt′xa(t)Gsym(t−t′)xa(t′) =
∫

Dξei
∫

ξxae−
1
2

∫
ξ(t)G−1

symξ(t′)

• Finally do the integrals over xa

ZQ =
∫

DxrDξ δ

(
Mẍr +

∫
iGR(t− t′)xr(t′) + ξ

)
e−

1
2
ξ(t)G−1

symξ(t′)



Important Points:

• Need the contour

• Need to integrate something out



The Real Time Thermal Fields and the Correspondence – Son& Herzog (2002)

• The AdS Black Hole Metric in canonical coordinates, f ≡ 1− (r0/r)4

ds2 =
r2

R2

[
−f(r)dt2 + dx2

‖

]
+

R2

f(r)r2
dr2 + R2dΩ2

5

• The canonical observer sees only one patch of space time

• Change to Kruskal Coordinates

• Consider the scalar wave equation

1√
−g

∂µ
√
−ggµν∂νφ = 0



Kruskal Coordinates and the Correspondence (Son-Herzog/Unruh/Israel):

• Source fields for ”1” and ”2” operators live on the right and left quadrants

O1 , O2 ⇔ φ1 , φ2

Amp.Conj Amp.

Schwinger Contour

1O

2O

⇔ 1φ

2

r =

8

x

t

r = 0

r = 0

RL

P

F

k

k

8

  8

t =
 −

0

r =
 r

r=
 r   

0t 
=

8 r = 

φ

〈
ei
∫

dt1 φ1O1e−i
∫

dt2 φ2O2

〉
SY M

= eiS[φ1,φ2]



Kruskal Observer and (t, r) Observer

r =

8

x

t

r = 0

r = 0

RL

P

F

k

k

8

  8

t =
 −

0

r =
 r

r=
 r   

0t 
=

8 r = 

ra
d

iu
s

Behind Event Horizon



Integrating out the Bulk

• The real time partition function of string for small fluctuations

Z =
∫ ∏

t1

dX1(t1)
∏

dX2(t2)
∏
t,z

dx1(t, z)dx2(t, z)eiSNG

r =
8

x

t

r = 0

r = 0

RL

P

F

k

k

8

  8

t =
 −

0

r =
 r

r=
 r   

0t 
=

8 r = 

• The integrals over the internal coordinates can be done and yield

Z =
∫

DX1DX2 eiSeff [Xcl(X1(t1),X2(t2))]



Boundary conditions Hawking/Unruh/Israel/Herzog-Son

• Solve the fluctuation eq. in (t, r) coordinates

e−iωt(r − 1)+i ω
4 out-falling

e−iωt(r − 1)−i ω
4 in-falling

• In Kruskal coordinates these are

e+i ω
2

log(−U) out-falling at future infinity

e−i ω
2

log(V ) in-falling at past infinity

• Decide how to extend these to the full kruskal plane

– Negative energy modes are outfalling at the future event horizon

∗ Anal. in upper U plane

– Positive energy modes are infalling at the past event horizon

∗ Anal. in lower V plane



Solution in the Kruskal Plane: 1φ
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 r
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 r   
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φ

• Can now find the solution

X1 dX1/dr︸ ︷︷ ︸
fixed by b.c.

↔ X2 dX2/dr︸ ︷︷ ︸
fixed by b.c.

• Substituting in the action yields the correct result

iSeff = −1
2

∫
dω

2π
X1(−ω)

[
−iM0

Qω2 + iG11(ω)
]
X1(ω)

X2(−ω)
[
+iM0

Qω2 + iG22(ω)
]
X2(ω)

−X1(−ω) [iG12(ω)]X2(ω)−X2(−ω) [iG21(ω)]X1(ω)



Summary of Technical Steps

• Integrate out the bulk. This ammounts to solving the classical equations of motion.

• Fluctuate the end point of a string at r =∞ at very small frequencies: u = 1/r2

SNG =
R2

2π`2
s

∫
dt dr︸ ︷︷ ︸
Area

[
1− 1

2

(
ẋ2
‖

f
− 4fu

(
x′‖
)2
)

︸ ︷︷ ︸
Quadratic Fluctuations

]

• Solve for the waves along the string in the full Kruskal plane – Boundary Conditions!

• Compute the classical string action as a quadratic functional of δX1 and δX2 .

δX1 = Right boundary string endpoint

δX2 = Left boundary string endpoint

• Massage the boundary path integral as in the Feynman Vernon procedure



Result

• Find the endpoint of the string obeys the expected Langevin equation

M0
Q

d2X
dt2

+
∫ t

GR(t− t′)X(t′) = ξ

• To quadratic order the retarded green function is

GR(ω) = (∆M)︸ ︷︷ ︸√
λT/2

ω2 − iω
κ

2T

• Then find the following effective equation of motion

Mkin(T )
d2X
dt2

+
κ

2T

dX
dt

= ξ

with the correct kinetic mass (see HKKKY)

Mkin(T ) = M0
Q −

√
λT

2
(1)


